古典概型说课稿
作为一位无私奉献的人民教师,常常需要准备说课稿,说课稿有助于教学取得成功、提高教学质量。那么优秀的说课稿是什么样的呢?下面是小编精心整理的古典概型说课稿,欢迎大家分享。
古典概型说课稿1一教材分析
1.本节内容在高中教材中的地位和作用
《古典概型》是高中数学人教A版必修3第三章第二大节的内容,教学安排是2课时,本节课是第一课时。古典概型是一种特殊的数学模型,它承接着前面学过的随机事件的概率及其性质,它的引入能使概率值的存在性易于被学生理解,也能使学生认识到重复实验在有些时候并不是获取概率值的唯一方法。同时古典概型也是后面学习条件概率的基础,起到承前启后的作用,在概率论中占有相当重要的地位。
(这节课是在没有学习排列组合的前提下学习的,所以教学重点不是“如何计算”,而是让学生通过生活中的实例与数学模型去理解古典概型的两个特征。我认为本节课的教学重点是——。)
2.教学重难点
教学重点:理解古典概型及其概率计算公式。
教学难点:古典概型的判断。
二学情分析
学生在小学已经体验过事件发生的等可能性,和游戏规则的公平性,能计算一些简单事件发生的可能性。在初中又进一步丰富了对概率的认识,知道了频率与概率的关系,会计算一些简单事件发生的概率。高中现阶段学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件的加法公式。有了这些知识作铺垫,学生接受起本节课的内容就会显得轻松很多。
(以教材为背景,根据学情设计了如下的教学目标)
三教学目标
1.知识目标:
(1)通过试验理解基本事件的概念和特点
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率计算公式。
2.能力目标:经历公式的推导过程,体验由特殊到一般的数学思想方法。
3.情感态度与价值观目标:
(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。
(2)让学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想。
(下面是根据这节课的特点和学生的认知水平,设计的教法和学法。)
四教法与学法
教学过程是教师和学生共同参与的过程,为了培养学生的自主学习能力,激发他们的学习兴趣,我准备采用如下教学方法:引导发现法,问题式教学法,多媒体辅助教学,反馈评价法。
我们知道:教学,重要的不是教师的“教”而是学生的“学”。我将引导学生进行分组讨论、归纳总结,并鼓励学生自做自评,做课堂的主人,通过学生间的合作交流,培养他们的团结合作精神。
(记得在一本书上看到过:有效的教学能够唤醒沉睡的潜能,激活封存的记忆,开启幽闭的心智,放飞囚禁的情愫。请跟我一起走进这节课的教学过程。)
五教学过程(共分为七个环节)
1.创设情景——引入新课
用课件向学生展示两个生活情境:
情境一掷一枚质地均匀的硬币的试验,可能出现几种不同的结果?
情景二抛掷一只均匀的骰子一次,点数朝上的试验结果是有限的还是无限的?如果是有限的共有几种?
根据试验归纳总结出:基本事件的特点
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
通过这两个熟悉的试验,先激发学生的学习兴趣,然后鼓励学生用自己的语言表述,从而提高数学语言的组织能力和表达能力。也让学生通过这些问题的解决了解并理解基本事件的概念和特点,体会从特殊到一般的数学思想方法,也为引出古典概型的定义做好铺垫。
2.层层递进——揭示主题
为了使学生进一步理解与巩固基本事件的概念,训练学生用列举法表示一个随机事件的全部基本事件。
用课件展示例1:
例1从字母a、b、c、d任意取出两个不同字母的试验中,有哪些基本事件?
要求学生在列举时要按照一定的规律做到不重不漏。
对照例1,我设计了如下的变式练习,让学生自主解决并相互交流结果。
变式练习(课件)一个袋中装有红、黄、蓝、绿四个大小形状完全相同的球,从中一次性摸出三个球,其中有多少个基本事件?请列举。
接着提出问题:例1和变式练习中的试验包含的基本事件是不是有限个?每个基本事件的出现是不是等可能的?根据学生回答得出古典概型的概念。
(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等。
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型
为了帮助学生进一步巩固和加深对古典概型的两个特征的理解,设置了这样的三个思考问题。
(1)从五位学生中随机地选择两位去参加一项集体活动,你认为这是古典概型吗?为什么?
(2)向一个方格随机地投一个石子,如果该石子落在方格内任意一点都是等可能的,
你认为这是古典概型吗?为什么?
(3)高一军训进行打靶射击时,这一试验的结果只有有限个:命中10环、命中9环……命中1环和命中0环(即不命中),你认为这是古典概型吗?为什么?
3.开放课堂——探究公式
了解古典概型的概念之后,就要引领学生探究概率公式,为了突破这个重点我设计了3个步骤。
首先提出问题:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率又如何计算?
为了解决这一问题,在课堂上演示计算机模拟掷硬币掷骰子试验。
接着让学生通过观察试验,分组讨论下面的三个问题:
(1)掷硬币试验中,“正面朝上”与“反面朝上”的概率分别是多少?
(2)在掷骰子试验中,“出现偶数点”的随机试验的概率是多少?
(3)你能从这些试验中找出规律,总结出公式吗?
最后在学生回答三个问题的过程中,逐步感受到由特殊到一般的数学思想,最终得出结论:
对于古典概型,任何事件的概率为:
P(A)=A包含的基本事件个数/基本事件的总数
让学生带着思考问题分组讨论,寻找答案,这样可以有效的利用课堂时间,达到教学目标。当然也培养了学生的自主学习能力和团结合作精神。还能让学生体验到认知的自然升华,感受数学美妙的意境。同时也体现了新课改中把课堂还给学生,提倡自主学习的新理念。
4.例题分析——加深理解
这节课的难点就是古典概型的判断,对例2的分析是突破难点的契机。
例2(课件)单选题是标准化考试中常用的题型,一般是从A、B、C ……此处隐藏11066个字……
(2)在使用古典概型的概率公式时,应该注意什么?
归纳:
在使用古典概型的概率公式时,应该注意:
(1)要判断该概率模型是不是古典概型;
(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。除了画树状图,还有什么方法求基本事件的个数呢?
教师提问,学生回答,加深对古典概型的概率计算公式的理解。
深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
四,例题分析推广应用
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
分析:
解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型。如果考生掌握或者掌握了部分考察内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型。
解:
这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的。从而由古典概型的概率计算公式得:
课后思考:
(1)在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?
(2)假设有20道单选题,如果有一个考生答对了17道题,他是随机选择的可能性大,还是他掌握了一定知识的可能性大?
学生先思考再回答,教师对学生没有注意到的关键点加以说明。
让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
巩固学生对已学知识的掌握。
例3同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个"有序实数对"来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。(可由列表法得到)
由表中可知同时掷两个骰子的结果共有36种。
(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:
(1,4),(2,3),(3,2),(4,1)
(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得
先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。
引导学生用列表来列举试验中的基本事件的总数。
利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。
培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。
五,探究思考巩固深
化问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?
如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别。这时,所有可能的结果将是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种,和是5的结果有2个,它们是(1,4)(2,3),所求的概率为
这就需要我们考察两种解法是否满足古典概型的要求了。
可以通过展示两个不同的骰子所抛掷出来的点,感受第二种方法构造的基本事件不是等可能事件,另外还可以利用Excel展示第二种方法中构造的21个基本事件不是等可能事件。从而加深印象,巩固知识。
要求学生观察对比两种结果,找出问题产生的原因。
通过观察对比,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。
六,总结概括加深理解
1.我们将具有
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等。(等可能性)
这样两个特点的概率模型称为古典概率概型,简称古典概型。
2.古典概型计算任何事件的概率计算公式
3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏。
学生小结归纳,不足的地方老师补充说明。
使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
七,布置作业
P123练习1、2题
学生课后自主完成。
进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。
八,板书设计教法与学法分析教法分析
根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
学法分析
学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
评价分析评价设计
本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式。这一过程能够培养学生发现问题、分析问题、解决问题的能力。
在解决概率的计算上,教师鼓励学生尝试列表和画出树状图,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑。整个教学设计的顺利实施,达到了教师的教学目标。